A versatile imidazole-based surfactant for the preparation of hierarchically porous (alumino)silicates

A.P. Bolshakov, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology
N.A. Kosinov, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology

Crystalline (zeolites) and amorphous (mesoporous silicas) (alumino)silicates applied as molecular sieves, sorbents, supports, and heterogeneous catalysts are a substantial part of modern industrial processes.[1] Despite the similarity of preparation strategy via hydrothermal synthesis,[2,3] the nature of the organic structure directing agents (OSDA), responsible for the formation of micro- or mesoporous networks is different. The ordered mesoporous silicas require a type of molecules that are able to form micelles in water solution, e.g. cetyltrimethylammonium bromide,[4] whereas zeolite frameworks are formed in presence of smaller polar molecules such as tetrapropylammonium hydroxide.[5]

In this work, we have developed a novel strategy of obtaining several ordered mesoporous materials using the same OSDA molecule - 1-hexadecyl-2,3-dimethyl-1H-imidazol-3-ium bromide (C_{16}IMZ). High-surface-area (1200 m2/g) amorphous mesoporous silicates were prepared in absence of aluminum, the addition of aluminum results however in highly crystalline hierarchical MOR zeolites (V_{mic} 0.08 cm3/g) with a nanorod morphology. The influence of the aluminum concentration, synthesis time and temperature on the structure, morphology, porosity, and acidity of the samples was determined by a combination of elemental analysis, Ar physisorption, TEM, SEM, XRD, NMR and IR studies.

The obtained mesoporous amorphous silica materials can be used as high-surface-area model supports for heterogeneous catalysis[6] or as drug delivery vehicles.[7] The strong Brønsted acidic mordenite nanorods are found to be very efficient catalysts for different hydrocarbon conversion reactions such as alkane hydroisomerization and Friedel-Crafts alkylations with substantial yield benefits compared to conventional microporous MOR zeolite.

![Figure 1. SEM/TEM images of as-synthesized amorphous silicate (left) and MOR nanorods (right)](image)

E-mail A.Bolshakov@tue.nl