A Cptt-based Trioxo-Rhenium Catalyst for the Deoxydehydration of Diols and Polyols

J. Li, Debye Institute for Nanomaterials Science, Utrecht University
M. Otte, Institut für Anorganische Chemie, University of Göttingen
R.J.M. Klein Gebbink, Debye Institute for Nanomaterials Science, Utrecht University

Trioxo-rhenium complexes have been known as active catalysts for the deoxydehydration (DODH) of vicinal diols (glycols). In our previous work, the bulky Cp-based trioxo-rhenium complex CptttReO\textsubscript{3} (Cpttt = 1,2,4-tri-tert-butylcyclopentadienyl) was reported to be a very active catalyst for the DODH of diols and polyols. The electron-rich Cpttt ligand of the complex stabilizes the high valence rhenium center, avoiding overreduction, and hampers catalyst dimerization leading to decomposition, to result in a high TON. Interestingly, a slight change of the ligand (removing one tert-butyl) results in a change in the activity of the trioxo-rhenium complex in DODH catalysis. Compared to CptttReO\textsubscript{3}, the new catalyst CpttReO\textsubscript{3} (Cptt = 1,3-di-tert-butylcyclopentadienyl) shows a better reactivity when applied to DODH of biomass-derived polyols.

In this review, we report on the DODH of diols and biomass-derived polyols using CpttReO\textsubscript{3} as a new catalyst. The DODH reaction was optimized using 2 mol% of CpttReO\textsubscript{3} and 3-octanol as both reductant and solvent. The CpttReO\textsubscript{3} catalyst exhibits an excellent activity for biomass-derived polyols. Specifically, glycerol is almost quantitatively converted to allyl alcohol and mucic acid gives 75% of muconates at 91% conversion. In addition, the loading of CpttReO\textsubscript{3} can be reduced to 0.1 mol% to achieve a turn-over number as high as 900 per Re when using glycerol as substrate. Examination of DODH reaction profiles by NMR spectroscopy indicates that catalysis is related to Cp-ligand release, which raises questions on the nature of the actual catalyst.

Scheme one. Trioxo Rhenium Catalyzed DODH of Glycerol

E-mail j.li3@uu.nl