Programme NCCC 2019

Monday: March 4th

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker/Institution</th>
<th>Title/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:45 - 11:00</td>
<td>Opening NCCC XX</td>
<td>E. Pidko and M. Tromp (Rotonde)</td>
<td>Opening NCCC XX by E. Pidko and M. Tromp (Rotonde)</td>
</tr>
<tr>
<td>11:00 - 11:45</td>
<td>PL1</td>
<td>C.W. Jones - Georgia Tech</td>
<td>Reflections on the State of Catalysis Research & Development and Linkages Between Catalysis Subdisciplines
Prof. C. Jones (Rotonde)</td>
</tr>
<tr>
<td>11:45 - 12:30</td>
<td>PL2</td>
<td>T. Bach - Technische Universität München</td>
<td>ENANTIOSELECTIVE CATALYSIS OF PHOTOCHEMICAL REACTIONS
Prof. T. Bach (Rotonde)</td>
</tr>
<tr>
<td>12:30 - 13:30</td>
<td>Lunch & Poster session I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30 - 13:55</td>
<td>KN1</td>
<td>M. Sanchez-Sanchez - Technical University Munich
Dr. M. Sanchez-Sanchez</td>
<td>Generating functionality in metal oxide catalysts for selective oxidation of light alkanes
M. Sanchez-Sanchez – Technical University Munich
Dr. M. Sanchez-Sanchez</td>
</tr>
<tr>
<td>13:55 - 14:20</td>
<td>O1</td>
<td>Stabilization of homogeneous Mo catalysts by bulky β-diketonate ligands in deoxydehydration reactions
M. Stalpaert – Katholieke Universiteit Leuven
HOM1</td>
<td>Design of Cr- and Fe-containing MOF catalysts for mild oxidation of methane
D.Y. Osadchii – Delft University of Technology
ZEO1</td>
</tr>
<tr>
<td>14:20 - 14:45</td>
<td>O2</td>
<td>Chiral Self-Assembled FeI2L3 Cages: Can We Do Asymmetric Catalysis with Nonchiral Catalysts in Chiral Cages?
B.S Sun – University of Amsterdam
HOM2</td>
<td>Design of Cr- and Fe-containing MOF catalysts for mild oxidation of methane
D.Y. Osadchii – Delft University of Technology
ZEO1</td>
</tr>
<tr>
<td>14:45 - 15:10</td>
<td>O3</td>
<td>Correlating the Structural and Catalytic Properties of Bimetallic Au-Pd Nanoparticles
J.E.S. van der Hoeven – Utrecht University</td>
<td>Near-surface Concentrations of Molecules during Carbon Dioxide Electroreduction Studied by in-situ Surface Enhanced Infrared Absorption Spectroscopy
R.K. Kas – Delft University of Technology
PHEL1</td>
</tr>
<tr>
<td>15:10 - 15:35</td>
<td>O4</td>
<td>The role of Sc3+ in the activation of Mn2IV(μ-O)3(TMTACN)22·H2O in the catalytic oxidation of alkenes with H2O2
J.D. Steen – University of Groningen
HOM3</td>
<td>The Unusual Electrocatalytic Water Oxidation Mechanism by Cu(Hbbpya)2
D. Boer – Leiden University
PHEL2</td>
</tr>
<tr>
<td>15:35 - 16:00</td>
<td>O5</td>
<td>Supramolecular isomerism of metal-organic frameworks built from Zn(II) and 2,5-dioxidoterephthalate
A Gheorghe – University of Amsterdam
ZEO3</td>
<td>Photochemically Driven Reverse Water-Gas Shift Reactivity
F.S. Schneck – Georg-August University
PHEL3</td>
</tr>
<tr>
<td>16:00 - 16:25</td>
<td>O6</td>
<td>Photochemically Driven Reverse Water-Gas Shift Reactivity
F.S. Schneck – Georg-August University
PHEL3</td>
<td>Photochemically Driven Reverse Water-Gas Shift Reactivity
F.S. Schneck – Georg-August University
PHEL3</td>
</tr>
</tbody>
</table>

Rotonde | **Sorbonne 2** | **Boston 17-19** | **Cambridge 30**
<table>
<thead>
<tr>
<th>Time</th>
<th>Event Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:45 - 15:00</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>15:00 - 15:25</td>
<td>Rotonde
O11 Operando Near-Ambient Pressure XPS study of CO oxidation over Pd/CeO2 powder catalysts
V. Muravev – Eindhoven University of Technology
FHC2</td>
</tr>
<tr>
<td>15:00 - 15:25</td>
<td>Sorbonne 2
O12 Regioselective CH borylation and hydroformylation via supramolecular control
S. Bai - University of Amsterdam
HOM4</td>
</tr>
<tr>
<td>15:00 - 15:25</td>
<td>Boston 17-19
KN2 Imaging Hierarchically Complex Catalyst Bodies at Multiple Length Scales
F Meirer – Utrecht University
Dr. F. Meirer</td>
</tr>
<tr>
<td>15:00 - 15:25</td>
<td>Cambridge 30
O13 Elucidation of the Surface Structure of a Molecular Copper Complex anchored on Gold via a Self-Assembled Monolayer
N.W.G. Smits – Leiden University
CC1</td>
</tr>
<tr>
<td>15:25 - 15:50</td>
<td>Rotonde
O14 Conversion of Synthesis Gas to Olefins and Aromatics using Bifunctional Catalysis at Industrially Relevant Conditions
J.L. Weber – Utrecht University
FHC3</td>
</tr>
<tr>
<td>15:25 - 15:50</td>
<td>Sorbonne 2
O15 Supramolecular Regulation Of Click Chemistry
T.G. Breve – Delft University of Technology
HOM5</td>
</tr>
<tr>
<td>15:25 - 15:50</td>
<td>Boston 17-19
O16 Concerted oxidative addition of aryl halides to Ni(0) enabled by a PPP pincer ligand: a mechanistic study
P.M. Pérez García – Utrecht University
CC2</td>
</tr>
<tr>
<td>15:25 - 15:50</td>
<td>Cambridge 30
O17 Two-faced steps: a unique study of molecular alignment effect to O2 reaction on nanostructured Pt
LBF Juurlink – Leiden University
FHC4</td>
</tr>
<tr>
<td>15:50 - 16:15</td>
<td>Rotonde
O18 Para-Selective C–H Olefination of Aniline Derivatives via Pd/S,O-Ligand Catalysis
K. Naksomboon – University of Amsterdam
HOM6</td>
</tr>
<tr>
<td>15:50 - 16:15</td>
<td>Sorbonne 2
O19 Advanced Characterization of HZSM-5/Al2O3 Extrudates after Catalytic Fast Pyrolysis
B. Luna Murillo – Utrecht University
THSP1</td>
</tr>
<tr>
<td>15:50 - 16:15</td>
<td>Boston 17-19
O20 Non-Heme Metal Thiolate Complexes of Novel NNO Phenolate Ligands and their Oxidation Chemistry
E.C. Monkcom – Utrecht University
CC3</td>
</tr>
<tr>
<td>15:50 - 16:15</td>
<td>Cambridge 30
O21 Bridging the Materials Gap with Nano-island Model Catalysts: The Co/TiO2 Fischer-Tropsch Showcase
I.C. ten Have – Utrecht University
FHC5</td>
</tr>
<tr>
<td>16:15 - 16:40</td>
<td>Rotonde
O22 Regioselective hydroformylation of fatty acids via supramolecular substrate preorganization
P.R. Linnebank – University of Amsterdam
HOM7</td>
</tr>
<tr>
<td>16:15 - 16:40</td>
<td>Sorbonne 2
O23 Why gold is activated on ceria
M.W.C Chang – Eindhoven University of Technology
THSP2</td>
</tr>
<tr>
<td>16:15 - 16:40</td>
<td>Boston 17-19
O24 Thermo-, solvato- and mechanochromism in mononuclear Cu(I) emitters is governed by a common mechanism.
G. Filonenko – Delft University of Technology
CC4</td>
</tr>
<tr>
<td>16:15 - 16:40</td>
<td>Cambridge 30
O24 Thermo-, solvato- and mechanochromism in mononuclear Cu(I) emitters is governed by a common mechanism.
G. Filonenko – Delft University of Technology
CC4</td>
</tr>
<tr>
<td>16:40 - 18:00</td>
<td>Rotonde
O25 Poster Session I
Sorbonne 2
O26 Poster Session I
Boston 17-19
O27 Poster Session I
Cambridge 30
O28 Poster Session I</td>
</tr>
<tr>
<td>18:00 - 20:00</td>
<td>Rotonde
O29 Dinner - N3C Award and DCS Quiz
Sorbonne 2
O30 Dinner - N3C Award and DCS Quiz
Boston 17-19
O31 Dinner - N3C Award and DCS Quiz
Cambridge 30
O32 Dinner - N3C Award and DCS Quiz</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>20:00 - 22:00</td>
<td>Company Market & Career Workshops</td>
</tr>
<tr>
<td>09:00 - 09:45</td>
<td>PL3 S. Bordiga – Università di Torino Partial oxidation of methane to methanol: is it feasible? Prof. S. Bordiga (Rotonde)</td>
</tr>
<tr>
<td>09:45 - 10:10</td>
<td>O25 Pore-confined NaNH2 and KNH2 as catalysts for low temperature ammonia decomposition F.C. Chang – Utrecht University FHC6</td>
</tr>
<tr>
<td>09:45 - 10:10</td>
<td>O26 Mechanistic studies on titanium-based catalysts for the esterification reaction L.A. Wolzak – University of Amsterdam HOM8</td>
</tr>
<tr>
<td>09:45 - 10:10</td>
<td>O27 Modeling Solvent Effects in Catalytic Reactions for Energy Conversion N Govindarajan – University of Amsterdam THSP3</td>
</tr>
<tr>
<td>09:45 - 10:10</td>
<td>O28 Flow by and flow through copper electrodes for the electrochemical conversion of CO2 into CO A.C. Sustronk – University of Twente PHEL4</td>
</tr>
<tr>
<td>10:10 - 10:35</td>
<td>O29 Structure-dependent activity of CeO2 supported Ru catalysts for CO2 methanation T. Sakpal – University of Twente FHC7</td>
</tr>
<tr>
<td>10:10 - 10:35</td>
<td>O30 Organocatalytic control over a fuel-driven esterification network M.P. Van der Helm – Delft University of Technology HOM9</td>
</tr>
<tr>
<td>10:10 - 10:35</td>
<td>O31 Spectroscopic investigation of a chromium-pyrrolyl ethene trimerization catalyst B. Venderbosch – University of Amsterdam THSP4</td>
</tr>
<tr>
<td>10:10 - 10:35</td>
<td>O32 B- and P-doped ordered mesoporous carbon electrocatalysts for the reduction of CO2 into formic acid P.P. Pescarmona – University of Groningen PHEL5</td>
</tr>
<tr>
<td>10:35 - 10:50</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>10:50 - 11:15</td>
<td>O33 Ostwald Ripening at the Individual Nanoparticle Level: In Situ TEM of TiO2 Supported Gold Nanoparticle Growth M.J. Meijerink – Utrecht University FHC8</td>
</tr>
<tr>
<td>10:50 - 11:15</td>
<td>KN3 Synthetic enzyme cascades – an eco-friendly, selective synthesis strategy D. Rother – Forschungszentrum Juelich GmbH Prof. D. Rother</td>
</tr>
<tr>
<td>10:50 - 11:15</td>
<td>O34 Octene cracking in acid zeolite catalysts: Insights from molecular simulations P. Cnudde – Ghent University THSP5</td>
</tr>
<tr>
<td>10:50 - 11:15</td>
<td>O35 Deposition of Pt onto P25 via Atomic Layer Deposition and its role on the photocatalytic activity D Benz – Delft University of Technology PHEL6</td>
</tr>
<tr>
<td>11:15 - 11:40</td>
<td>O36 Elucidating the roles of copper and oxygen in heterogeneous Wacker oxidation over Pd-Cu-exchanged zeolite Y catalyst via time-resolved multi-edge XAS studies J. Imbao – ETH Zurich FHC9</td>
</tr>
<tr>
<td>11:15 - 11:40</td>
<td>O37 The optimum particle size for Cobalt based Fischer-Tropsch synthesis M.P.C. Etten – Eindhoven University of Technology THSP6</td>
</tr>
<tr>
<td>11:15 - 11:40</td>
<td>O38 Why does Oxide-Derived Silver work so well as an Electrocatalyst for CO2 Reduction? – an operando EXAFS Study N.J. Firet – Delft University of Technology PHEL7</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>11:40 - 12:05</td>
<td>O39</td>
</tr>
<tr>
<td></td>
<td>O40</td>
</tr>
<tr>
<td></td>
<td>O41</td>
</tr>
<tr>
<td></td>
<td>O42</td>
</tr>
<tr>
<td>12:05 - 12:30</td>
<td>O43</td>
</tr>
<tr>
<td></td>
<td>O44</td>
</tr>
<tr>
<td></td>
<td>O45</td>
</tr>
<tr>
<td></td>
<td>O46</td>
</tr>
<tr>
<td>12:30 - 13:30</td>
<td>Lunch & Poster Session II; Mentoring session on publishing by Prof. C. Jones</td>
</tr>
<tr>
<td>13:30 - 14:20</td>
<td>PL4</td>
</tr>
<tr>
<td>14:20 - 14:45</td>
<td>O47</td>
</tr>
<tr>
<td></td>
<td>O48</td>
</tr>
<tr>
<td></td>
<td>O49</td>
</tr>
<tr>
<td></td>
<td>O50</td>
</tr>
<tr>
<td>14:45 - 15:10</td>
<td>O51</td>
</tr>
<tr>
<td></td>
<td>O52</td>
</tr>
<tr>
<td></td>
<td>O53</td>
</tr>
<tr>
<td></td>
<td>O54</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
</tbody>
</table>
| 15:10 | **O55** Tuning the Cr(III) and Cr(II) Population in Cr/SiO2 Phillips-type Ethylene Polymerization for Controlling the Catalyst Activity, Induction Period and Polymer Properties
 M.K. Jongkind – Utrecht University AHC3 |
| 15:35 | Coffee Break |
| 15:50 | **KN4** Dr. L. Bini
 M. De Martino – Eindhoven University of Technology BOC6 |
| 16:15 | **O62** Substrate vs. ligand control over absolute and relative stereochemistry in Pd-catalyzed intramolecular allylation reactions
 E. Ruijter – VU University Amsterdam BOC7 |
| 16:40 | **O65** Particle Size Effects for Carbon-Supported Cu and CuZnOx Catalysts in Methanol Synthesis
 R Beerthuis – Utrecht University AHC4 |
| 17:05 | Poster session II |
| 17:30 | Dutch Catalysis Society meeting (Cambridge 30) |
| 18:30 | Special Anniversary Dinner - DCS Thesis Award, NCC Award |
| 18:45 | **O56** Formate oxidase to promote biocatalytic oxidation
 S.J. Willot – Delft University of Technology BOC5 |
| 19:00 | **O57** SPECTROSCOPICALLY VALIDATED ELUCIDATION OF THE ZEOLITIC α-Fe/α-O ACTIVE SITES AND INTERMEDIATES FOR SMALL MOLECULE ACTIVATION
 M.L.B. Bols – Katholieke Universiteit Leuven THSP11 |
| 19:30 | **O60** Copper catalyzed coupling of acynitrenes to terminal alkynes. A fast and atom efficient road to N-acyl amidines.
 K.M. van Vliet – University of Amsterdam HOM10 |
| 20:00 | **O63** A Cptt-based Trioxo-Rhenium Catalyst for the Deoxydehydration of Diols and Polyols
 J. Li – Utrecht University HOM11 |
| 20:30 | **O64** The origin of metal loading heterogeneities in Pt/zeolite-Y bifunctional catalysts
 L.I. van der Wal – Utrecht University ZEO8 |
| 21:00 | **O67** Making Amines out of Thin Air: Iron-Mediated Synthesis of Anilines from Unactivated Arenes and Dinitrogen
 D.L.J. Broere – Utrecht University HOM12 |
| 21:30 | **O68** Tuning the catalytic activity of metal-organic frameworks (UiO-66) through the linker: defects or functional group?
 G.X.F Fu – Katholieke Universiteit Leuven ZEO9 |
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>21:00 - 23:00</td>
<td>Party with Live Band (Rotonde)</td>
</tr>
<tr>
<td>21:00 - 23:00</td>
<td>Drinks reception (Sportsbar "Cheers")</td>
</tr>
</tbody>
</table>

Wednesday: March 6th

<table>
<thead>
<tr>
<th>Location</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotonde</td>
<td>PL5 M. Robert – University Paris Diderot Running the clock: catalytic reduction of CO2 with 2, 6 and 8 electrons with Co and Fe molecular catalysts Prof. M. Robert (Rotonde)</td>
</tr>
<tr>
<td>Sorbonne 2</td>
<td>O69 1T-MoS2 is not the active phase for the direct synthesis of methanethiol from syngas and H2S M. Yu – Eindhoven University of Technology AHC5</td>
</tr>
<tr>
<td>Boston 17-19</td>
<td>O70 Towards an Industrial Process for Au-Catalyzed Carbohydrate Oxidations: Evaluation of Batch- vs. Continuous Reactors F. van der Klis – Eindhoven University and Research Centre REN1</td>
</tr>
<tr>
<td>Cambridge 30</td>
<td>O71 Microkinetic modeling of the Fischer-Tropsch reaction on metallic cobalt nanoparticles B. Zijlstra – Eindhoven University of Technology THSP12</td>
</tr>
<tr>
<td></td>
<td>O72 Understanding the Competition between Two-Electron Reduction Products for Carbon Dioxide Electrocatalysis D. Bohra – Delft University of Technology PHEL10</td>
</tr>
<tr>
<td></td>
<td>O73 Support effects on the catalytic behaviour of cobalt-nickel alloy catalysts for the Fischer-Tropsch synthesis C. Hernandez Mejia – Utrecht University AHC6</td>
</tr>
<tr>
<td></td>
<td>O74 Biobased chemicals: Selective aerobic oxidation of tetrahydrofuran-2,5-dimethanol to tetrahydrofuran-2,5-dicarboxylic acid using hydrotalcite-supported gold catalysts Q Yuan – University of Groningen REN2</td>
</tr>
<tr>
<td></td>
<td>O75 Turkevich synthesis of plasmonic gold-silver bimetallic nanoparticles revisited N. Blommaerts – University of Antwerp THSP13</td>
</tr>
<tr>
<td></td>
<td>O76 Ag@CeO2 photocatalyst: Method, Characterization, Model, and Application D.B.O. O'Neill – University of Twente PHEL11</td>
</tr>
<tr>
<td></td>
<td>O77 Ethylene – the main intermediate of the methane dehydroaromatization reaction? I. Vollmer – Delft University of Technology AHC7</td>
</tr>
<tr>
<td></td>
<td>KN5 Carbohydrate based conversions – from catalyst preparation to reactor choice J.H. Bitter – Wageningen University and Research Centre Prof. J. H. Bitter</td>
</tr>
<tr>
<td></td>
<td>O78 Utilizing π-π Interactions for Non-Covalent Binding of Transition Metal Complexes in Self-Assembled Cages R Plessius – University of Amsterdam HOM13</td>
</tr>
<tr>
<td></td>
<td>O79 Single Particle Diagnostics: Liquid Phase Hydrogenation Reactions Inside a Microreactor A.E. Nieuwelink – Utrecht University FLOW1</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>11:15 - 11:40</td>
<td>O80</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O81</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O82</td>
</tr>
<tr>
<td>11:40 - 12:05</td>
<td>O83</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O84</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O85</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O86</td>
</tr>
<tr>
<td>12:05 - 12:30</td>
<td>O87</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O88</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O89</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O90</td>
</tr>
<tr>
<td>12:30 - 13:15</td>
<td>Lunch</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>13:15 - 13:40</td>
<td>KN6</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O91</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O92</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O93</td>
</tr>
<tr>
<td>13:40 - 14:05</td>
<td>O94</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PL6</td>
</tr>
<tr>
<td>14:05 - 14:50</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Event</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>14:50</td>
<td>Lecture and Poster Awards, DCS, Closing remarks</td>
</tr>
<tr>
<td>15:10</td>
<td></td>
</tr>
<tr>
<td>15:15</td>
<td>Buses depart for Leiden Central Station</td>
</tr>
</tbody>
</table>